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ABSTRACT

The electromagnetic field problems involving moving isotropic
and lossless medium have been studied, based upon Minkowski's
theory of electrodynamics of moving media. The analysis of the
problem is facilitated by the use of the auxiliary functions known as
potentials, which are introduced in a manner similar to that used
for the stationary medium. Two problems are considered: the field
expansions in and the parameters of the waveguide filled with medium
moving uniformly along the direction of the axis of the guide, and the
radiation field of a line source located above and parallel to a moving

dielectric half-space.
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CHAPTER 1
INTRODUCTION

The extension of Maxwellls theory from media at rest to
those in motion was originally studied in the latter part of the
nineteenth century. The covariance of the equations of electro-
dynamics under the Lorentz transformation was first proved by
Lorentz [ 1] and Poincare. [ 2] Einstein [3] formulated the
special theory of relativity in 1905. However, their work was
confined to the question of the isolated electron and did not cover
the case of ponderable bodies in general,

The problem of the electrodynamics of moving media was
first formulated correctly in 1908 by Minkowski, [4] Despite the
fact that his work was done almost sixty years ago, this subject
has received very little attention; recently, however, there has
been a revival of interest in this topic, principally as a result of the
work of C. T. Tai.[5] Two other works on this subject which
should be mentioned are those of Fano, Chu, and Adler,[ 6] and
Boffi.[ 7] These authors have each presented a formulation of the
electrodynamics of moving media that is apparently different from

that of Minkowski, It has been shown by Tai, [8] however, that all



three of these formulations, as well as some other possible ones,
are mathematically equivalent., For the case in which the velocity
of the medium is small compared with the speed of light, the
Maxwell-Minkowski equations can be simplified, Several studies
were made under this assumption, Compton and Tai[9] have
derived the dyadic Green's function for an infinite moving medium,
Collier and Taif 10] discussed guided waves in moving media, A
problem dealing with the reflection and refraction of a plane wave
at the boundary of a semi-infinite moving medium was also in-
vestigated, [ 11]

The exact theory with no restriction upon the magnitude of the
velocity was developed by Tai[ 12] in connection with the radiation
problem in a moving isotropic medium. By transforming the wave
equation into a conventional form and then solving it by means of an
operational method due to Levine and Schwinger, a compact result
was obtained. Another exact formulation for the same problem has
been developed independently by Lee and Papas. [ 13] They derived
the differential equations for potentials in the moving media from
those which are well known in the stationary case through the
Lorentz transformation, and then solved the transformed wave

equations using the Green's function technique, Their method



was also extended to the case in which the moving medium is
dispersive, [ 14]

In this study, we consider some additional problems in
the electrodynamics of moving media, for the case in which
there is no restriction on the velocity of the medium. In Chapter
II, the Maxwell-Minkowski equations for the eleci:romagnetic |
fields are presented and some suitable potential functions are
intr(;duced in a way analogous to that commonly used for statioﬂary
media, In Chapter III the work of Collier and Tai on the propagation
of guided waves in moving media is extended to the case of arbitrary
velocity, Chapter IV presents the theory of the radiation of a line
source over a moving dielectric half-space. Four cases are con-
sidered: an electric line source and a magnetic line source each in
two orientations, parallel to and perpendicular to the direction of
the velocity of the medium,. The moving medium is assumed to be
lossless, isotropic, and to have an index of refraction greater than
unity. A solution for the Maxwell-Minkowski equations is con-
structed in the form of a Fourier integral, The integral is
evaluated for the far field by deforming the original contour into
the steepest descent path. In the process, an additional branch
cut integral is encountered, but this is found to give a negligible

contribution to the far fields.



CHAPTER 1I

MAXWELL'S EQUATIONS AND WAVE EQUATIONS
ASSOCIATED WITH MOVING MEDIUM

In this chapter. the wave equations as well as the equations
satisfied by the potential functions in the moving isotropic medium
will be derived which reduce to those of the stationary medium as
a special case,

Maxwell-Minkowski Equations and the

Transformation of the Field
Vectors

According to the special theory of relativity, the Maxwell's
equations must be covariant under the Lorentz transformation, In
other word-s, the Maxwell equations have the same form in all
inertial coordinate frames., Hence, for any medium moving or

stationary we have

1 xE .28

(1) v T et
G, 0D

(2) VXH=T+ 5

(3) v+ D=p

(4) Vs B=0.



We shall use primed quantities to denote field variables which are
measured in an initial frame K' and unprimed quantities to denote

the field variables in an initial frame K, In particular, we assume

all the electromagnetic sources and the observers to be stationary

in the K frame and the medium which is moving at a uniform

velocity v with respect to the source and the observers to be stationary
with respect to the K' frame. If we assume that the two inertial
frames K and K' have the same orientation (i, e., the x,vy,z axes are
respectively parallel to the x',y', z' axes) and are coincident at

t =t' =0, then the field variables defined in the two frames trans-

form according to the following relations:[ 15]

- - 5.7 -
(5a) E = Y(E +v X B) +(1—Y)—Z“ v
\'2
(6a) B = ¥(B - LT xE)+ -y — v
C v
S m = H.3 -
(7a) H = YH -v X D) +(1-Y) v
VZ
_ L - 5.7 -
(8a) D= YD+ =V x H)+ (1-Y) —5— ¥
C v
where



0
1

1/ /Fo€o = velocity of light in free space,

If the velocity v is directed in the y-direction Eqgs. (5a), (6a), (7a),

and (82) can be written in a more compact form as follows:[ 16]

(5b) E' =Y. (E + v X B)
(6b) 1—3'=7-(_B-—(l:2\7><f>
(7b) H' =Y. (H- v X D)
(8b) o =v.(5+l_z ;xﬁ)
C
where the tensor 7 is defined as
Y 0 0
Y = 0 1 0
0 0 Y .

For an isotropic linear medium which is stationary with respect to
the K' frame the constitutive relations between the primed field

vectors are then given by
(9) D'= ¢ Ef

(10) B' = pH!

where € and p denote, respectively, the permittivity and permeability

o



of the medium when it is stationary., We assume the medium to be
lossless, Expressing E', D' s H' and B' in terms of E, 5, H and
B we find with the aid of Egs. (5b), (6b), (7b), and (8b) the con-

stitutive relations in the K frame which are

(11) '13+—1C—2'\7xﬁ=e(§+7><—13)
(12) _B-%E;xizp(ﬁ-;x_m )

By solving for B and D in terms of E and H with v = v{r\, one

finds { 17]
(13) D=ca+ E+ QX H
(i4) B=pa+ H-Q XE
where
— (n2- 1P
_
0o

p OO

* This useful notation is due to Prof, C. T. Tai of the University of
Michigan,



Substitution of (13) and (14) into (1) and (2) yields the Maxwell-

Minkowski equations for moving isotropic medium, They are

(15) vxE=-8i[p?i-ﬁ-§xE]
t

(16) v X H

1}

T+ a%—[ej-ﬁ+ axH] .

For harmonically oscillating fields with a time convention e-lmt (15)

and (16) may be converted into

(17) (V +iwR) XE = ivpa - H

(18) (V+iwd XH= J -iwvea » E

-iwt —
The time factor e is understood and J is considered

to be the current source term in a lossless moving medium,

The Wave Equations

The wave equations for E and H can be obtained by eliminating

respectively E or H between (17) and (18). They are

(19) (V+iw® X [@ '« (V+iwg) XE] -k'a » E =iwpJ

(20) (v +iu2) X [a Ve (V +iuD) xH] -k'a- H

= (V+i®) X (a-l. )



where @' denotes the inverse of j and k% = wzp.e. By virtue of (13)

and (14), Maxwell's equations can be written as

(17) (V+iwg) XE = jop @ - H
(i8) (V +iwQ) X H =-iweq « E +J
(21) Ve(ea+ E+Q XH) =p
(22) Ve (e H-QXE) =0 .

Expanding (17) and (21) and eliminating the term including H we

have instead of (2i) the following relation

(23) (V+ iwf2) » (ea- E) =9+ T +p .
Similarly,
(24) (V+iw_)=(p:2-}_{) =0.

These equations are seen to be similar to those for the stationary

medium, except for the substitution of the operator

(25) D, = ¥ + iwf2

for the nabla operator 7, If the vector field functions El and EII

are defined such that

- E

Q1|

(26) E, =

and



(27) H =a-H

then —}-E_l and ﬁl satisfy the equation

=_ = —_ 22— —_
(282) D, X[a '+ DX (a-!s E)] - kK E; = iwpd

— 1 — —_

(28Db) D, X [a~

- D, X (a'. Hy)] -kKH, =D, x(a" ' 7).

It is not difficult to show by writing out the operators in cartesian

coordinates that

(29) D, X [a7'. Dy x (@™'. Ey] = ﬁ [ D,(D,- E)) -@4D1) E;]

where the operator ¥V, and D, are defined by

_ A 0 A 0 AO 1=
(30) Va— X % +y’ ;—. ay +z,"—‘_8z = ;a v
i
(31) Dy =vVa+ 95—

In view of Eqs, (28), (29), (23) and (24) the differential equations

for —E—)l and ﬁl are then

D, (2- T+ P)

€

(32) (D * D) E, + kKaE, = -iwpal +

=—-1

(32b) (D, * D)) H, + kKaH; = -aD; X(a '« J)



Potential Functions

The equations satisfied by the electric and magnetic vector
and scalar potentials are found by proceeding in.the same way

as for a stationary medium, [ 18] Since from (24) and (25)

(24a) D;* (¢ + H) =0
we may write (taking advantage of the fact that D; » D; X W= o

for any vector VV)

(33a) pj - H® = D, X A

where the superscript e denotes that H® is associated with fields
of the electric type (transverse magnetic TM), Substituting (33a)

into (17) we obtain

(34a) D, X (E° - iwA) =0 ,

In view of the above equation we introduce the electric scalar

potential function U, Since D, X DU = 0, we set

(35a) E® - iwA = -D,U .

Applying the operator "D; X'"to (33a) we have

-1

(362) D, X (0 H%) = D, X [a!- D, X A] .

Substituting (36a) in (18) and making use of (35a) give.s

11



12

(37a) D, X[e"'. Dy XAl =k’a + A +ivpea - DU+ uJ .

If we define another vector function Kl such that

(38a) Aj=a- A
then Xl satisfies the following equation

=_1

=-1 — 2— = —
(39a) D; X[a "« DyX (@ - A)] =k A, +ivpea - DyU+ uJ.
We may now impose upon Kl and U the supplementary condition

(40a) D, - A, = iwpe a°U.

As a result of (29) and (40a), (39a) becomes

— 2 — j—
(413-) (Da ° Dl) Al +k aAl = "a'J-J .

Substituting (35a) in (23) and making use of (40a) one obtains the
differential equation for U as

22 _ (Q'J"'p)
(423.) Dl'(a'DlU)-i-ka.U—-—————

€

The explicit expressions of (4la) and (42a) are

2 2.2

9% 1 9% 9 2i02 9 wR

3 —_— t = — + —_ -
(4 -a) [ax a oy azz + a oy a

+ kza] Kl = —ap.—j-



2 2 2 . 2 5_'5_,_
442) [5?* AN P T 3 I N P AL
e a

oi

y z a oy a ae

-

Since E® and H® are derivable from A and U, we have, from (33a),

(35a) and (38a)

R p— :_ ‘ -— l -—
(452) E° =iwA - DU =iwa "'+ A, - - 5 Dy(D, - A
jwpe a
(463.) ﬁe=-l—;_l‘D1XA—=&T¥_1- DIX(_Q—’—1~K1)_
v

Assuming J =0 and p = 0 and there is a magnetic current source M

(17) becomes

(17a) (V +iuQ) XE =iwpa - H- M,

A similar procedure is followed to find the equations satisfied by the
potential functions F and V associated with the fields E™ and H' " of
the magnetic type (transverse electric, TE), A summary of these
results is given below, The equation numbers correspond to those
in deriving the electric type fields as shown above. E™ and H™

are evaluated in terms of -F—‘ and V as

= -1

o e [Dlx(g']. }1)]

i

_l_a,'l . (Dle‘) = -
€

ml,._,

(45b) E™

— =-1 —
iwF - D,V =iwa  » F) - D,V

o]
"

(46b)

T and E‘l are related by

(38b) F,=a-F .

13



The supplementary condition imposed on f‘l and V is
(40b) D, + F, = iwpea’v

Fl and V satisfy the following differential equations

—— z — —
(41Db) (D, D)) F, +ka F; = -aeM
and
- Q- M
(42b) D+ (@ s D,V) +k%a?V = - Qu .

The explicit expressions for (41b) and (42b) are

2 2 2 . 2.2
1 9 - -
(43b) 2+ 28 2 4 2R 0 w8 4% IF = acM
ax a2 gy? 9z a 9y a
and
2 2 2 . 2 0. M
(44b) 9 4 1 9 + a n 21002 9 o_.)_zs_‘z_ + K% V= - 9]
ax?  a gy?  8z° a 9y a ap .

All four of the potential functions Kl, E‘l, U and V satisfy the same
equation as that of El and I-_Il in the source-free region. By com-
bining (45) and (46) one finds the total E and H fields in terms of

the four potentials, These are

(45) E = iwA - DU -

"
[ ]
€
Q

1
b1
]



(46)

s

* |-

T |-

a™'s D, XA +iwF - D,V

-1 . Dl x (;—1 L4 Al) +iw-¢;_1 * F],

R

1 o
- Dy(D,* F,).
foorie 22 1(Dy 1)

15



CHAPTER I
PROPAGATION IN WAVEGUIDES

In this chapter we shall consider the problems of electro-
magnetic waves in the interior of a cylindrical or rectangular
waveguide which is filled with a homogeneous, isotropic and loss-
less medium with constitutive parameters p and ¢ moving at
uniform velocity v = 2y along the axis of the guide., The wave-

guide is assumed to have perfectly conducting walls and to be

infinitely long. The field solution in the guide can be divided into

two basic modes, TE and TM, TM modes have no axial component

of magnetic field, and the field components can be derived from a
vector potential A = £A, TE modes have no axial component of
electric field and the fields may be derived from a vector potential
F =%F,

Equation (43) which the potentials A and F just mentioned
have to satisfy can be written for the problems discussed in this

chapter as

2 . 2 A
2, 1 3o SR R L D Bl G
(47) [Vt * a 0z° a oz a F,
where
- pamy — —_ A [ —
A1—£A1=a°A=A=£AandFl=zFl:a-F:F:QF.

16
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2,
The operator V. is the transverse part of the e operator, In the
u;, uz, z coordinate system with scale factors h,, h;, and unity,

Eq. (47) becomes

h]hz 51:; hl Bul hlhz Buz hz 3\12 a é;z

(48) [1 8 hy 8 41 8 b 8 ;1 2

o
°

—

. 2 A
210k o] L) + kza] 1
a oz a

L
Since Kl = A and f‘l = F we will formulate the problem in terms of

A and —f‘ directly.

The Rectangular Waveguide

The appropriate solution of A and F which satisfies the boundary

conditions for the waveguide configuration shown in Fig, 1 is

ihz

(49) A = 2A = A sin kyx sin kyye m=1,2,3,""°
= ZA sinr—n—txsinﬁy bz £ =1,2,3,°""

o % Yo
(50) E‘ = QF = QFO cos kyx cos kyy eﬂrlz m =0,1,2,"°"
=QFocosmxcos i!!T—y e1hz 4 =0,1,2,¢+-
*o Yo m¥ £ £0 .

Substituting (49) or (50) into (47) or (48) gives the following

equation relating the propagation constants

2 2.2
h _ 2%h w00 4% =9
a a a

2 2
(51) -l + k) -

The above equation can be solved to give

17
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(52) = -0t /kzaz - kia

2 2 2 :
where k> = k- + 182' = () 4 (Lim . Each set of integers m and £

C X XO YO
corresponds to a given mode which will be designated as the TM, .

(or TE ) modes,
mié

AY

Yo

Fig, 1--The rectangular waveguide

The TM modes may be obtained from A by means of Eq. (45a)
and (46a) where we have to interchange the y and z coordinates

because the medium here is moving in the + z direction, Thus

(V + i) + A

— ~ ~ uf_z
(53a) E = jiwA - (¥ + if2) Tope a
=% Ao(htud) kx o kxx sin kyy e thz
wpe a?

A +w) k ih
_9 Ao(htwi) ky sin kyx cos kyy e 2

wpe a?

A . (h+w$ 2| | ) ikz
+z A [1(.0 + ——iwpe 2z sin kyx sin kyy e



(53b) H= - a «[(V+iw2) X A]
Aok ;
= £ 2 Vsin kyx cos kyy elhZ
pa

_Q Aokx
pa

cos kyx sin kyy e':Lhz .

In a similar way the TE modes may be obtained from F by means

of Egs. (45b) and (46b) giving

— -1 =- — —
(54a) E= e+ [(V+iwR) X F]
Fok i
=8 2Y cos ky x sin kyy elhz
€a
Fok i
_}/,-\ eoa X sin kyx cos ls,y e1hz
- = - (V+iw®) - F
(54b) H = iwF - (V + iwf)) - 3
iwpea
Fok, (h+w$ i
=% Foky (bt wi) sin kyx cos k y'e:Lhz
wpe a? Y
+ 9 M cos k. x sin kyy eihz
wie a

(h + w82 ih=z

2 i cos kyx cos k_,y e
+z Fgjiwt iwpe a2 X y .

19
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Cylindrical Waveguides

The proper form of A and F for the cylindrical waveguide

shown in Fig. 2 may be written as

- os

(55) A=8A =0 A Tmker) (o mo eP?
sin

(56) F =2F = 2F Ip(ker) :;’; mé e Pz

where J (kcr) is the Bessel function of integer order m, A and ¥

satisfy (48) which for this problem is

. 2 2 . 2
(57) [l 88 + _12' o + 1 2 + 2i0Q 8 _ oWX +kz%{?}
r a

Fig, 2--The cylindrical waveguide

From (55)(or (56)) and (57) we obtain the relation

2z wx? 20h  h*
(58) ko=k a2 ekl



The TM modes may be derived from A by means of Eqs. (45a) and

(46a) in the form
_ — (v +ie) - A
(59a) E = iwA - (V + iwn) 3

iwpea

A Aoh+w dIm(ker)  cos me eh?
-r wpe a_z dr sin

A mAg(h+wR) 1 -sin ihz
- —_— X = J_(k
¢ wpe a? r m(ker) cos mé e

(h +wf) 2 os ihz

A c
z > Jm(ker) | md e
sin

+ Al [iw +

iwpe a

(59b) H=2220 x1 5 (x5 %" me P2
m C
Ma r cos

A Ag dJm(kCr) COs ihz
-¢ . mbe .
pa dr sin

The boundary condition at r = ry requires

(60) Jm(kerg) =0

which determines the allowed values of k.. There are an infinite
number of solutions which will be enumerated as p,, y. Hence k¢

can assume only those values

Pmi
T

(61) Ke, me =
o

and the corresponding modes will be labeled TM,,;, where the first
subscript refers to the number of cyclic variations with ¢, and the

second subscript refers to the £th root of the Bessel function,

21



The TE modes may be derived by means of Eqs, (45b) and

(46b) as
(623) E=-£2% 5 (ker) T mp o7
€ar cos
A Fo d cos ihz
+¢ =0 J
¢ ca df 'm (ker) cin mo e
— Fo(h+ w2) 4 cos ih
_ AoV T 9 ihz
(62b) H=-r o e 3e  Jm(ker) sin mé e
A mFqg(h+ wQ) 1 -sin ihz
) ——————— X = J. .. (k
wpe a2 r m(ker) cos me e

2
A ‘o + (h + Q) :] Tk cos eihz
[o] 1w iwp.e az m( Cr) sin *

The boundary condition at r = r, requires

d

(63) I

Jm(kcr)| r=r =0.
(o]

There are also infinitely many solutions for (63) which will be
designated by p;nf and k. is given by
I
Pmy

1‘0 -

(64) Ke, my =

The corresponding modes will be labeled TE,,y. Equation (58) can

be used to solve for h to give

(65) h=-w2?[Kk%a? - Ka

22
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where

c (TM modes)

k= Pml  (TE modes) .

Waveguide Parameters

The formula and the conclusions given in this section apply to
both rectangular and cylindrical waveguides with few exceptions
which will be specified individually. k. will assume the value given
in (52) for the rectangular waveguides and the value given in (61)
or (64) for cylindrical waveguides,

The propagation constant is given in (52) and (65) as

h= -2l [k%% - kA .

When nf8 < 1 the cut off occurs for
2
2
ka < kC

i.e.,

’ 2 2

1-

(66) ko E(__ﬁ_z)__ Skc
l-nzﬁ

’ pe€ .
where kg = w ’ Moo 1 = boe ? and the cut off frequency is

0o~o

kC
(67) fo = R
¢ ZﬁJmJn(l_B) .

l__nz[-,)z

23



When { is less than f. wave may propagate in the -z direction
with phase velocity Vp = 1/Q and an exponentially varying
magnitude. When f is slightly greater than f_. there is no at-
tenuation, but waves can propagate in the -z direction only (two
waves with different phase velocities) unless f is large enough

such that the following relation is satisfied

(68) k%’ - kza_>_ wX?
Equation (68) can be manipulated to the form

nz_ﬁz
2“\} p'C'Eo l—ﬁ?‘ .

For frequencies greater than f, waves can propagate in either

(69) £2 1,

direction without attenuation but with different phase velocities,
If v = 0 then B =0 and we have

. _Ke
(70) f, =17 ZwJp_E
which is the usual cut off frequency in the stationary case. When
np > 1 a will be negative while -wQ is positive, In this case there
is no cut off phenomenon at all, Propagation (with two different
phase velocities) will be possible in the +2z direction only, unless

the following relation is true



2

(71) kK%’ - k2 a > (-9 2.

Equation (71) can be simplified to give

ke
(72) f<f = 2 g
n -
2“4 p'oeo 1 ﬁz

The summary of these results is exhibited in Fig, 3,

PHASE PROPAGATION

IN -2 PHASE PROPAGATION IN BOTH
nB<I DIRECTION ONLY DIRECTIONS POSSIBLE

L o o l( \.f

r - - —
o\ ~ e fe

wll\_:'JEPNHlquSTEE% E\:J-é\)\(/:t;:?Y PROPAGATION WITHOUT

ATTENUATIO
IN -Z DIRECTION N
PHASE PROPAGATION IN BOTH PHASE PROPAGATION IN
nB>| DIRECTIONS POSSIBLE +Z DIRECTION ONLY
A A

4 N0

b - + > f
o f_

—e

Y

PROPAGATION WITHOUT ATTENUATION

Fig, 3--Frequency ranges for wave propagation in the waveguide
with the medium in it moving in +z direction

There are an infinite number of modes which can exist in the
waveguide but for a given frequency only a finite number of them

can propagate freely if the velocity v = #v is small such that np<1,
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Therefore, when nf3 < 1 several parameters can be expressed in

terms of the cut off frequency. These are

o
I

(73) c = Z“ch pe a

2 2
(74a) h = -wtawfpe [1 -C—C) J
—_ __u'— (1 2 + 1 2 1 fC z}% £> f
T Genpe (R _ﬁ)[ (f_> e
1
+ £ \2]°
(74Db) h = -2 -iawCJTL; [l -(-f——) :\
1 +c 2 { ZFW
S -n? 8t iw ; (L

where we = 2mf.. The guide phase velocity and guide wavelength are

respectively

]

Ut

<
Il

1
2712
g «/h = (i-n2B%) c¢/4(i-n3) B T n(1-BY {1-(%)} }

1
2
g 2n/h = (l—nZBZ)Ko/‘{(l-nz) Bt n-p? [1-(%)2} }

where c = l/moeo and \, is the free space wavelength, The TM,;

J

o

>
I

characteristic wave impedance is

M E By tangul id
(77) Zey = {oO T - (rectangular waveguides)
Yy X
E E
it S (cylindrical waveguides)
H¢ H.



_htup
T wea
+ 22 z
k%l -
= 2 c? np > 1 or np < 1)
we a
1
+ faN2 |2
= -n[l -(TC)] (nB < 1 and f> £)

i

1
;9 [1 _(i)zr (nB < 1andf< £
w f
C

where n = /eﬁ is the intrinsic impedance of the medium, Similarly,

the TEy characteristic wave impedance is

TE E E
(78) Z = X - _ X (rectangular waveguides)
mi H H
y x
E E
= =X = - . (cylindrical waveguides)
Hy, H,
wpa
B h+ wQ
wpa
= (B> 1 or np < 1)
2. 2 2
Jk a® - kca
n 1
=2 [1- (/521 % mp<1 and > £)
_1
2
=i [0 -(£/5)%] ‘mB< landf<f) .
We
™ _TE ,
It is interesting to note that the product Zny Zml = 7 = p/e at all

™™
frequencies and all velocities of motion of the medium, Zm! and
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zml

as given in (77) and (78) when np < 1 are of the same form
as those when the medium in the waveguide is not moving, The

power flow in the rectangular waveguide for TM modes is

1 ¥ Yo . _.  _
(79) P=-Z—Re§ g\ Ex T%. d5
P o
2 2
x 2 2 ,ka -k.a
b =0 A k55— mB>1 ornp<
Zeornéoﬁ w M €a
2 2 , 1
b %Yo Aol KD [1-(fe/n?)2
= 1 X np <1, £> 1)
2
2 ¢ €0y a?u Jpe

where €¢_, is defined as equal to 1 when £ = 0 and equal to 2 when

£ > 0. For TE modes it is

vy iF IZkZ kzaz kza
X | -
(80) p:f 2= ° S " < (nB > 1ornp< 1)
2€50 €om wpea
|2, 2 . 2.3
4+ Xo¥o [Fol ke [i-(6/D°]
= ! X ————— (<1, f>f1).

2
2¢ 57 €om a“e [pe

In cylindrical waveguides the corresponding expressions are

2 2 2
+ -rr{AO! ré d 2 ka-kia
(81) P=- E;— Jm(kcr) } W
2¢om r=r

(np>1 ornf < 1)
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(T
2 2 ] =-f —
!Aol r d 2 __f__

o
=t 2 °1 % g5 ok
2¢om [ dr (kex) Jr= r'0:| a’ud pe

for TM modes and

(82) P

+ TT|FO|ngkz (
- 70" "0 "¢ 1 -

2¢0m

(np >1ornp <1)

1+

[1 (fc 2}‘2‘
2 2.2 2 -\ =

F k m 2 f

Trl ol To¥c (1 _ ) I (keTo)

2¢6m

(B < 1, £> £)

for TE modes, Although the phase propagates in the way shown in
Fig. 3, the power flow for the two waves in the guide are of the
same magnitude and in opposite directions,

When the velocity v approaches zero or when the constitutive
parameters of the medium are equal to thoée of free space, 2 will
approach zero and a will approach one; the expressions and results

obtained reduce to the familiar ones for media at rest,



CHAPTER IV

ELECTRIC AND MAGNETIC LINE SOURCES LOCATED
OVER A SEMI-INFINITE MOVING HALF-SPACE

The geometry of the problem which will be considered in

this chapter is illustrated in Fig. 4. J (or M) is a line source

OBSERVATION

A OBSERVATION K POINT
POINT
LJorRM) JIOR M)
REGION I T ,
""o’eo d
y Y4
s
REGION I v y -
Bo€

Fig, 4--Line source located over a semi-infinite half-space

of electric (or magnetic) current located at x = d above the plane
x=0. The line source is either parallel to the y-axis or the z-axis,
The half-space x > 0 is assumed to be free-space. The half-space

x < 0 is assumed to be a dielectric with permittivity € and permea-
bility pand it moves at constant velocity v in the positive y-direction,

The purpose of this study is to find out the effect of the motion of this
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region on the radiation pattern, Analytically the problem is quite
similar to that of a line source above a grounded dielectric slab

as given by Tai, [19] Barone,[ 20] and Whitmer.[21] The Fourier
transform method has been used to construct a solution for the
field 'in integral form. The resultant integral is solved by the
saddle point method for the far field, A branch cut integration
must be included in several cases which will be discussed later on,

The time dependence is assumed to be of the form e %,

Electric Line Source
Parallel to Z-Axis

An electric line source located at x =d, y = 0 and parallel to

the z-axis can be represented as

(83) = 21,6 (x-d) 8(y) .

Since the current has no variation in the z-direction, the radiated
field is also independent of z. The z-component of the magnetic
field is zero, and hence the electromagnetic fields may be derived
from vector potentials KT in region I and KB in region II having
only z-components, The electric and magnetic fields in region I

are given by

— — VvV AT
E = 1wAT -
iwpgeg
(84a) H= L1 v x KT
Po
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or

1 9AT

(84b) E, =0 Hy = 5o Ty
_ _ -1 Q8AT

Ey=0 Hy = 4o Tox

E, = iwAp H, =0

z

where XT = A 2 and A satisfies the wave equation
2 2
(85) V' Ap + kgAT = -pg I, 6(x-d) &(y)

and suitable boundary conditions as discussed below,

Let the Fourier transform of AT be denoted by g,

s}
~ik
(86) g1(xky) = S‘ AT(x,y) e VY dy
- O

then the Fourier integral

1 ikyy
(87) AT(Xs Y) = '2: g1(x, ky) € dky

-0

is a solution of Eq, (85) provided that g, satisfies the equation

2
+ (kg —ky)gl = -uol, 6(x-d).

(88)

A suitable form for the function g, is

if (x-d)
(89a) g1 x, ky) = c,e (x 2 d)

-if (x-d .
(89b) giz2(x, ky) = e if (x-d) + R (x+d)]

ks



2 2 2 .
where £ =k, - ls, and c;, ¢ and R are constants to be determined,

At x = d, g, is continuous but é&‘i— is discontinuous, Integrating

(88) from x =d_ to x =d+ gives )
dy
dg

—_— = - I
dx |d o %o

-

and this specifies the discontinuity of the derivative at the source,

The boundary conditions at x = d are now readily found to give

— I ; 10 (%~
(90a) g = ( o °)[ 1 + Ry Hx-dD) (x > d)
214
(90b) g2 = (:;_oji)[ e'.iJz (x=d) R e (x+d)] (o £x <d) .
1

In region II let

Q|
1]
<>
e

- A
(91) v=yv
where KB is the vector potential and @ is defined as before. Intro-

ducing the vector function XBI such that,

—_ A
(92) Ap,=2Ap = a* Ap = aAp =zaAp

then AR, has to satisfy Eq, (43a) which in this case is

2
(93) + - +ka}ABl=o.

2 a 2 a oy a

oy

82 1 8% pATRYY 3 wi?
ox
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The Fourier integral

[+ 0] . .
1 ik ox+ 1kYY
(94) Ag, = Py S‘ fl(ky)e dky

-0

is a solution of (93) where k, is given by

2 .z Gk 2w 1] 2
(95) kx—ka—:—-—;—ky—aky

and f; has to be determined from the boundary condition at x = 0.
For transverse wave numbers £ and kx, the branches that
lead to attenuated waves so the Fourier integrals converge must

be chosen. This requires that we choose the roots such that,

(962) Int 20
and
(96b) Ik, <0

also the conditions Ref{ > 0 and Rek, < 0 correspond to outward
propagating waves,

The fields in region Il are given from Egs. (45a) and (46a) by

—_ —_-1
(97a) E = iwAg - DU = iwa  + Ag;- D,U

iwAp, (V+ie®) [ (V+ iwQ) - Ap]

a iw pe a?

£a



— = _1 — —
(97b) H = & @ . (v +ius) X Ap
1 —.l1 . =_1 -
= a <[ (VtiwQ) X (@ - Ap))]
or
1 a'ABl N
= = — + iR A
Ex 0 Hx |-'-az [ ay 1w Bl}
-1 9A B,
Ey=10 Hy=". ox
iwA
EZ =3 M HZ - 0 .
a

The boundary conditions of continuous tangential electric and mag-

netic fields at x = 0 demand the following relations:

- al .
(98a) f1 = HoZ 0 ifd (1+R)
2if
(98b) = Kalo M g
2iky
which gives the solutions
(99a) R pe + pokx
a = T
L - pokyx
. ifd
(99b) f; = 1loappoe
mE - poky .

Therefore the final expressions for the field components in the region

x 2 d are given by the integrals of the form,
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(102a) kyr =

[=e]

p —wpol 1 g .

(100a) E=58E, =2ivAT= 2 —5>0 S' n [1+ BE +poks elZEd}
T - poky

-0

| il (x-d) +ikyy a,

[« 0]

- k £+ pok .

(100b) H, = &h g‘ 711[1 4 B Feoky elzﬁd]
m --m P‘l - P.ka
if (x-d) +ik,y
- e 77 dky,

I @ g k

100c)  m, = fo (|14 ML TPRomx i20d) ik (x-d) tikyy g
4 4 BE - Hoky y*

The branch points in the ky-plane can be located by solving the

equations,
2 2
101 ky~-k =0
(101a) o~ Ky
2.2
2 w Q2 2082 1l .2 _
(101b) Ka-""— -7 ky aky 0.

The results are

+
_ko

n+ B

:ko and =k n—ﬁ
1 +nf

ol—nﬁ.

(102b) kyz = -2 T ka

When nP < 1 one of the branch point shown in (102b) is on the right

side of point k, while the other one on the left side of point -kg.



When np > 1 both are located on the right side of point k,. When
n = 1 the branch points given in (102b) are the same as those given
in (102a), This is shown in Fig, 8,

The proper positions of the branch cuts can be found as follows,
Assuming that there is small loss in the free space the wave numbers

kgs £ and kx become

1
(103) ko = kg + ikg
2 s RRRTA ] LA 2 "2 12 n2
(104) L7 = (ko + 1ko) - (ky +1k}’) = (kg =~ kg = ky + kY )
. 1. n 1 1]
+i2(kky - kYkY)
2 1 LA nz_pz H LM (nz~l ,3 roon
(105) k, = (ko +ikg) 1—_6{ - 2(kg t iky) ———}—l B (kY+1ky)

_ l—nzﬁz ! '

e Gy i

12 2 n?-p? n-1)B TN TR T
= (ky kg ) —p -2 (koky - ko ky)
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The branch cuts that separate the proper and improper branches
occur along the curves Im{ =0 and Im ky = 0 which are portions

of the hyperbolas determined by the equations,

it L]

(106) Iy ky - kK kg = 0
and

" nz—ﬁz (z-l) "ot oo
(107a) k. kb i — 7 (o ky + ko Iy)

ety
1-p2 VY
i, e.,
c, o lnp gy, @ne o] e 0 e®1-pY7

(107b) Ky 1 - n2p2 OJ Yooaon?p ° ° (1-n?6%) % .

The branch cuts due to transverse wave number £ are shown in

Fig, 5. They run from the branch points toward the imaginary axis,
In the limit as kg — 0 the cut becomes part of the real axis between
-ko and k and the imaginary axis, In the crosshatched region both
the real and imaginary parts are positive provided we choose the
positive root or branch for £, The original contour cj must lie

entirely in this region to represent outgoing waves,



Fig. 5--Proper branch cut due to {

The branch cuts due to the transverse wave number ky are
shown in Fig., 6 when np < 1 and in Fig. 7 when np > 1, The
centers of the hyperbola are in the third quadrant for nf < 1 and in

the first quadrant when nf > 1, In the limit when k; reduces to
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Fig, 6--Proper branch cut due to ky when np < 1



Aiky
=0BkS | .5
Imky=0 n2B2-1\ |T+ng@ ¥o

fe ? |
2-/ 0 ko /\
:7@ Bz):k.?/ A
~n2-))8 | (N8 kot

//////

\

ko = kg *+iko

y
(nz-l)Bk'o\ g
I . k.s=0
3| nZBZ-l mex
Rekx=0

Fig. 7--Proper branch cut due to ky when nff > 1
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zero the cut becomes the section of the real axis from - i‘ﬂ ko

1-nB
2
n+ B . ! n-1)p .
k d the 1 =-$—z)—-k when nf3 < 1, This
to T+nB o an e line kY ] -n?p? o B
line moves further toward left as nB approaches 1., Whennff > 1
n-p

the branch cuts become the sections of the real axis from nf-10°
to +© and from —l—nf;—l% k, to -©, In the crosshatched regions the
real and imaginary parts of ky are both negative provided we choose
the negative root or branch, The entire original contour ¢y must
lie in this region also, As the branch cuts may be chosen quite
arbitrarily, as long as they do not intersect the contour c,, we fix

their positions in the way shown in Fig, 8. This choice will be con-

venient for estimating the branch cut integrals, as discussed later

on,
The location of the poles are determined by requiring
(108a) pl = poky .
2 2 2 2z 2 wi? 202 1 K2 E .
= - = - - — - = . t 108
As { k, kyandkX k“a S - ky T Ky quation (108a)

can be solved by first squaring both sides, The roots obtained have
to be examined to find out on which sheet of the Riemann surface

they are located. Thus,

2,2 2.2
W= o Ry

i, e,,



TR /]
Aiky

nB<l
n -—
I-nB ko
“RO
)C {a o\ 0 —$ & )-k'y
(o] ko n+ k
| +nB ©°
oy M
Aiky
nB>l
Ko o ,
- (& ——\ \‘J‘*ky
Co ko n+pB K n- K
1+nB° nB-1°
Fig., 8--Relative positions of branch points
and branch cuts
2 o) .2 2bk, p2 2 2 2 R2b%k2 5 2
(108b) e - 0 kg O ky + pon'k,a - Ko %o pl=
a a a
(n*-1) B .
where b = > = cf2, The solutions are,
1-n°p?
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2.2
[ 2 2 2
A = [% (b2-1) + p.onz (Ko - Ka) + p.*] .
For the special case where p = py, Eq. (109a) reduces to

ko
(109b) k, = 2 k

Y- B o

and the pole is of order 2.
On the proper sheet of the Riemann surface we require that
Imf 2 0 and Im ky < 0, So the poles which are solutions of Eq. (108a)

are on the sheets either proper for £ and improper for k, or vice

versa,

When v = 0, Egs, (100) reduce to that of reflection from a
semi-infinite dielectric medium, [ 22] When p = Mo @2nd € = €5 R
reduces to zero and Eqgs, (100) represents the field radiated from
a line source in free-space, Hence the motion of the bottom region
which has the same constitutive parameters as the upper region

will not produce any effect on the radiation field,



FEvaluation of the Contour

Integral

The integrals shown in Eqgs. (100) are too complicated to be
evaluated rigorously and approximate method must be used, The
saddle point method is useful for an asymptotic estimation of
integrals of this type whén there is a large parameter involved.
To apply this method of integration it is convenient to transform

the integral into a complex ¢-p1ané defined as

(110a) ky=k0 sin ¢

(110b) dky =k, cos ¢ dé

(110¢) 1 = ’-’Jké - k; = kg cos ¢
(1104d) ¢ = o +in

(110e) y=r sin 0

(110f) x-d = r cos 0,

The integral (100a) becomes

WMo ikor cos($-6)

I
(111) E, = —ZTTO_ g P($) e dé

€o

where
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Aiky ky= ky*’iky

ky=koSIN ¢
$=0+in

O

7n=-COS

C

z

/l:
7/ +N b
D (s}

Fig. 9a--Path of integration in ky-pla.ne and é-plane
when np < 1
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2 1
pcoscb-po[nza - 2— -2b s1n¢—._. sin? ]2
a
(111a) P@) = ; 1
pcos¢+po[na-%—— Ehs1nd‘>——s ¢]2
) a

i2dkycos ¢
e

Equation (110) represents a mapping of the complex ky-plane into a
stripe of the complex ¢-plane, The transformed path of integration
¢, and the branch cuts in ¢-plane are shown in Fig. 9. The branch
cuts which separate the sheet for whichIm £ > 0 from the sheet
for which Im £ £ 0 are no longer cuts in ¢-plane, Because of the
choice of positive sign in (110c) the hatched region in Fig. 9 cor-
responds to the proper sheet for £. The branch points associated
with ky in the ¢-plane are transformed from (102b) as the solution

of the equation

n+ B n-B

and -
1 +np 1 -np

(112a) sin(oc + in) =

and the poles from (109) as

2 2
b 1
e f*“'zl/(“z'h)
a a

/B (f 1= k) .

1]

(112b) sin(op +mp)

(112c)

Their positions on the ¢-plane as relative to those branch points are
shown in Fig. 10 when p= pg. As was mentioned earlier, those

poles given by (109) and (112b,c) are located on sheets which are



o “ ] I I
i-nB ko ) -Ko '
y =®->k : X- >k
y - y
o ko n+f Ko 0 ko n+ kon B Ke
1+nB 1+nB ° nB-I

\
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\ \
Iy
y

/ Zlo 12£ ”

Fig, 10--Positions of poles relative to branch
points when p = pg

proper for one of the transverse wave number and improper for the
other one, so the poles in the hatched region of ¢-plane are on the
bottom sheet while the poles in the non—hé.tched region are on the
top sheet.

The saddle point of the exponential term occurring in Eq. (111)

is found by setting
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:—¢ cos(b-8) = 0
which gives ¢ = 8, The steepest descent contour is determined by
cos(0-0) coshn =1 which is denoted by cg in Fig. 9 where cg;
is the contour corresponding to positive observation angle 6, and
cgz corresponding to a negative observation angle 0,

The main task now is to deform the original path c into the

steepest descent contour c; and then perform the integration

s
along cg.

In deforming the contour c, into contour cg passing through
the saddle point 4 = 6 some of the poles of P(¢) given in (109) or

(112b, ¢) may be encountered and the contour may be intercepted

by the branch cut., So (111) may be written as

(113) E, = - w_%c;_lg g‘ 2 (0) JKor cos(@-0)

Cs

_lwpslo ;‘ F(o )eikor cos($,-8) .
2 > P
P

where d)p is the value of ¢ at the pole as given by (112b,c), F(¢p)
has a magnitude equal to the residue of P(¢) at the pole and a sign
chosen to correspond to the position of the pole. K is the branch

cut integral,



If P(¢) does not have a pole in the vicinity of the saddle point
the integral along the steepest descent contour is readily evaluated

by expanding P(¢) in a Taylor series about 6 as

=2 o ™
(114) P(6) = P(8) + > P™(0) (®-8)
- m!
m=1]
where
m
a0 p
py) = ) \
d¢o .
¢=06

Along the steepest descent contour cg near 6, let ¢-6 = pelw. Then

£(¢) = ikyr cos(¢-6) =£(6) + %—i— . ($-6) + %-g—fz{ (¢-6f
' = 0 ¢:e
+ oo
~f(e) + L 2% (6-0)
— Z W 4

i

ikgr —%— ikgr pZcos 2w +%kor pzsin 2w

1l

ikor - % kor p?

and 21 3
TRy
W= _-:L-T- ¢ =06 +pe dé=e ~ dp in the 2nd quadrant
L) s
-iy i

dé=e dp in the 4th quadrant,

€

I

]
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Hence the integral term in (113) becomes

- I i -
(115) wpo Io S" P(d))elkor cos(¢-90) do
4
Cs
w
__ wikolo Sﬁ z pm (¢ g)™ oikor cos(d:—@)d(1>
4 g 0 “mil
m=
3wy . _kor ,
- Skolo Z UO o), (3 Hor T2
X - e e
47
m=0- p,
i(Tr -£>
. e 4 dp
u kor ™
P pMg im(-") ikgr - -2 2 ;3
+ g' (' ) pme 4 e 2 e * dp
. m!

The major contribution to the integral comes from a small range
0 < p < p, along the contour cg provided kyr is sufficiently large,

Combining the two terms in (115) gives

™ o] Ll
ikor-im m -imy
(116a) -‘*’*;010 . 4 Z %l e (14 (-1) 7]
- |
m=(

Pr m 1k 2
°§pe2°rpdp.

(o]

Because of the rapid decay of the exponential, the integral from 0

m+1

@ _lk rpz =
g o™ 2R P g 2(5205) >
o

to p; does not differ much from (

m > -1
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where I" is the gamma function. The leading term of (116a) is

therefore

o

wpe Io ikgr-i
S —— e P(o) .
2y2m (kgr)2

The residue of P(¢) at the pole ¢, is given by

(116b) E, ~

(117)
b 2b 1 1
- pcos¢+po(nza—;—-3—- sind - sin%b)2
(¢p) = b2  2b L oinZor 2]
— [pcos¢+ Bo(n?a - — -==sind -~ sin“¢)
do a a a _
¢_¢p
2 1 .
[wcosd - po(n’a b _2b sin¢ 1 sin?)? ] ei2dkocosd
a a a
+ 2 1
4. [pcosd + po(nza- b% _2b sinti)-l sin®$)? ]
d a a a
4=ty
i2dk,ycos ¢
2|J.2 cos ¢p e © P
B 2 T
- i 0 i
¥8 s1nd>p + > (b+ 51n¢p)
i2d kg cos ci)p

(118) = tan cbp (1+ ideocos¢p)e (if p=pg) .

(a-1)

If a pole d)p happens to be near the saddle point ¢ = 6 the Taylor
series expansion of P(¢) is no longer valid in a sufficiently large
enough region around the point 8, Then a Laurent series must be
used, When p= p, the pole is of order two and unless the observation
angle © is near 90 and B is nearly equal one this pole of order two

will not be in the vicinity of the saddle point, In all other cases
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the pole is a simple one. We have

(119) P@) = —02 4 p ()

¢ by
where P;(¢) is analytic in the region around 6 and may be developed

into a Taylor series, F(¢p) is the residue of P(d) at ¢ = c|>p and

P;(¢) can be expanded in Taylor's series as,

Pi6) = ) arm(6-0) "
m=0
_1 | Figp)
am ml gl {P@’) ¢_¢p } .

The portion of the integral for the field involving P,(¢) leads to the

same form discussed before, The remaining integral to be evaluated

is,
- I F ik -6
(120) wpol, g‘ (¢p) e1 of cos($-0) db .
41T -CS ¢—¢p
Near the saddle point and along the contour cg
~ 2 1 2 i2w
cos (¢-0) ~ 1 - ($-6) /2=1-5 p-e
¢ -bp=b -0~ (dp - 6)
3w L
L E o) = pe i E
b -¢,=pe - ($p-0) = -pe 3;(¢P_e)

d¢ = e1 4 dp in 2nd quadrant



m m

iy iy
¢ - ¢P =pe - (¢p—6) dé = e dp in 4 th quadrant

We get in place of expression (120),

- T Cwlolp ikor | 0 & Sty
(121) v F(¢p) e g' . 3 P
L] 1-——
P1 pe” 4 -(¢P'9)
2
kor p .
-5 o
g-Pl € e 4 dp
+ .
. “1l4
o pe T -(bp-0)
i _ko;' P
- kor +i4 @©
wHolo . 4 d
v F(op)e ($¢,-8) S’h . o .
2w P P p2-1(¢p=0) 2

Making the change of variable t = p2 in the integral
kor p2

@ 2
I= 81 £ dp
o PP-i(¢p-0)?

and following the steps as shown by Oberhettinger[ 23] we have

_kort
@ 2
(122) I= % g ; - dt
o t?[t-i(¢5-0) 7]
—ier (¢ _e)z _L ik 1
= 127- e ¢ P [-i(¢p-9)z] ® erfc [_120r (¢p-9)2}2
where
© 2
2 -t
erfc (x) = —" g‘ e dt .
I
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The error function may be expanded asymptotically for x — @

as|[ 24]
I 1

(123) erfc (x) = £ > (-1)™ I'(m+3) _-2m
xF m—:O (3

3
provided the phase of x is in the range between _4_1r and 3;—“ erf(x)

is an odd function of x so if the phase of x is not within this range
the above asymptotic expansion can still be used through the use of

the following relation,

(124) erfc(x) = 1 - erf(x) =1+ erf(-x) = 2-erfc(-x) .
™ 1
2
If the phase angle of | - 1%of (¢p-9) 2} is in the range between —241
d 3T integral (120) becom 2
and 7~ integra ( ) bec es kot p
i T2
ikor + i ®© e
~w polo 1¥o 4 — dp
125 ——— F(d,) e (¢p-9) ]
(125) 2T P P phi(e,-0)2
k. .r 2
op I ikor + iy -i5(6p-0) 1
- 2loo F(oy) (4p-0)e e [ -i(¢p-0) 2]
afn ‘
ior
—— (¢p-9)
e 2 p
ikor 2]z




™
ikor +i'4— [= ]

-1 F i
(125) _ -iwpolo x (¢p) el (o™ ' (m+%)
(cont. ) 2 (2koT)? (6=0) Mz '(3)
ikor 2 ]-m
° [_ > (¢p_e)
- o
_ —iwpo Io F(ép) el(kor+4) [1 L 1 +] .

2[m (2koT)2 (¢ -0) ikot (¢p-0) °

This expression shows a significant modification of the radiation
field when ¢p is located close to the saddle point 6,

When n8 < 1 and if the angle of observation 6 extends over
one of the two limits (one on the right side and another on the left

n+ B n-fB

the path of integration will be intercepted by a branch cut. To

side of the x-axis given by 8; = sin™" (l_tn_ﬁ and 0, = sin—l(—l—:n—p))

evaluate the integral in this case a branch cut integration must be
included, Following Ott's [25] method, a complete contour can
be constructed as shown by cgh; or cgphz in Fig. lla where the
dotted line denotes the part of the path which is traveled on the
bottom sheet of the two Riemann surfaces, The corresponding
path of integration in the ky—plane is shown in the same figure,

When nf > 1 and if the angle observation 0 is in the range between

1 + - -1
6 = sin~" ( - +ng) and 8 = sin 1( 2‘3_ 5 )a branch cut integral must

also be involved, The path of integration is shown in Fig, 1lb. The

branch cut integration which is now part of the total integration can
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Fig. 1la--Path of integration when the steepest descent
path is intercepted by the branch cut and nf§ < 1



Fig. llb--Path of integration when the steepest descent
path Cg is intercepted by the branch cut, nfp > 1 and

sin"l[(nﬁ— 1)/6-1-[3)] < @< sin'l[(nﬁ+ Yo+ ﬁ)]
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l+n[3k° nB|k°
i
_w///_l a z .
2
CS

Fig., llc--Path of integration when the steepest descent
path C is intercepted by the branch cut,nf > 1 and
0 > sin"[(np+ I+ B)]
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be performed in the complex ky-plane as follows:

Let a change of variable be made such that

(126) ky = kyo + it/y

‘where kyg is one of the branch points given in (102b). In terms of

the new variable t, the following approximations are permissible

for large values of y.

2
2 .2 2 .2 it 2
2 —ko—ky-ko-(kyo + Y—) Ko~ Kyo
N 2 2
k _kyo
22 b'KY 2bke ¢
ky=nka - ° - Kyo +i— ) -
a a y v
_ _2bko it Zkyo it . 1 &
a Y a y a YZ
" 2 it
1
+ ok i2/
1 1+£___H.9_2‘_ eIZd}-:_l_ 14+
J3 pl =poky £

{4

k i2fd
LN 1+2.|i9_x>e J.
£ (VN4

Equation (100a) reduces to

2
t .
+ —y—z - Zlky-o t/Y
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: . + o)
—iw pgl if (x-d) ( Hok i
020 Ezgranen ® Gy © ) 1+(1+2 %ﬁ) o124
8]

. e-teikyoy dt

\S1]

.2
_ tlopgly

" 2wty [% (boiyo) 1;} R

e

(to) ) L
. Y e  (-t)% dt

«©

o=

w kol i2
— (bk. +k
3/2 [ a (Pko YO)

ZJw_Hz(kf)*lgz,o) y

K K ek ) +ikyoy
The above result is obtained by making use of the contour repre-
sentation of the gamma function, [ 26] The branch cut integral given
above contains an exponential damping factor and it is inversely
proportional to the three half power of y. Hence it is always
negligible as compared with those given by (116) or (125).

Those residue terms which have to be considered as shown in

(113) when the contour was deformed contain an exponential factor

eikor cos(q)p—e) _ ikgr cos(cp-e) coshnp+ kT sin(O‘p-—G) sinhnp

and the real part of the exponent is always negative, Except when

8 = 90° the residue wave is also negligible as compared to the space

wave given by (116).



The same procedure can be used in evaluating the field

components H, and H, as given in (100b) and (100c). The leading

y
terms from the saddle point method of integration are
eikor—ilr.

~ _kolo [2 ——— 6 pee)

(116c) Hew- 5202 Taoi
.
1 r-1
k. I o] 4
(116d) Hy X g /g & cos 8 P(6)
(kor)?

where P(0) is given in (11la). Converting into cylindrical coordi-

nates we have

(116e) H.~ 0
. s
1kc,r—14
kolg e
(1161) Hg ¥ Hycos 0 - Hy sin® = ——— ——1 P(9)
2/2m (kor)z
. LT
N -w p’O IO 1k0r_1 4
(116Db) E,~ ——— = P(0)
22w (kor)z

and the Poynting vector is

2
A w I""'OIO

A 2
(116g) S=3EXH"=% | P(o) |

which has only a radial component,
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Magnetic Line Source Parallel
to Z-Axis

For a magnetic line current source located atx =d, y =0

and parallel to z-axis we write

(128) M = 2 My8(x-d) 8(y) .

The radiated field has no variation with respect to z, As the z-
component of the electric field is zero the total fields may be
derived from electric vector potentials ]:«:T in region I and EB

in region II having only z-components, Similar procedures are
used in solving this problem as that for the electric line current
source case given in the previous section, Only those important

steps and results are given below,

The field components in upper region are derived from —F-‘T as

= _ -1

(129a) E=>= VXFp
o
(129b) H= iwFp - ———
lwIJ-OEO
or
oF
-1 T
E, =— S H, =0
X Eo aY p:8
oF
1 T _
Ey— E_ 9% H.y—O
(o]
E, =0 H, = iw F



where ET = QFT and FT satisfy the wave equation

(130) VIFp + KoFq = -€ o Mg 6(x-d) 6(y)

and the suitable boundary conditions, The solution for (130) is

«©
1 ik
(131) Fp = 3 Y galx, ky)e V) dky
-0 .

where gz is given by

-¢ M i2fd
(132a) ga(x, ky) = ( ;ﬂ 0) [1+Re 1 (x24)

“¢oMg) -if (x-q) if (x+d)
(132b) gZZ(x9ky) = T[e + Re ](0 <x <d)

1

2

. 2 0% _ 4
with [/ —ko- ye

In the bottom region let

(133) S =9v Q=30
EB —QFB

and introduce the vector function such that

(134) Fp,=2FB, = a+ Fg=aFp=2aFpg

where Fp, satisfies Eq., (43b) which reduces here to

82 1 0 2iw __Q_ _ Q)ZQZ +kza Fg; =0 .

135 — t
(135) B2 a 2 a ay a
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The field components in this region are derived from IE_‘B by Egs.

(45b) and (46b)

€
- [ (V+iw2) X (a='. Fgy)]
H py = = +inQ i) F
(136b) H = inB - D)V = iw « 1, FR, _(v 1w )[(v 1w 2) FBI]
iwpe a?
or
= +iwQ2 FB H, =0
EX— Eaz [ay 1 %4
E = 1 9FB; H =0
Y ea 9x y =
Ez =0 sz—lg)_ FB1 .

The Fourier integral
1 ikyx+ ikyy
(137) = — g\ Y) e dky
2T
-0
is a solution of (135) provided ky is given as shown in Eq. (95).

By matching boundary conditions at x = 0 we get

€l + egky

(138a) R= T



i itd
iaege Mg e

(138Db) i, =
€l -~ eokx v

The choice of the branches of £ and k, are decided in the same
way as for the electric line source case, The field components

in the region x > d are given by integrals of the form,

N .
oM 1 izfd, if(x-d) +ik
(139a) H, = -‘”TOP_S‘ 7 [1+Re“ e (x=d) deky
™
-0

[0
M k i20d. if(x-d)+i
(139b) Exzzf—g' }X[1+Re1 le ) *ikyy dky
* _o

dk

-Mg ® ji2fd, if(x-d) +ikyy
- y
(139¢) E, = g‘ [1+Re ]e y -

y 41

-

The branch points are given in Eq, (102) and their relative
positions shown in Fig. 8. The poles are found by solving the

equation,

(140) ef =e k, .

2
be 1 e
= Z 0 + npz 2 e)
(141a) ky—ko[a _B]/G_a>

where

22
€€

B = [ o (bz-l) +e‘c2>n2 (ezo-eza) +E4J
a

and
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(141b) ky = ko/B = ko (if € = ¢g) .

Applying the transformation shown in (110) Eq., (139a) changes

to
: —w €~ M. ikgr cos(¢-6)
(142) H, = 2070 g‘ Q) e do
44 .
Co
where
b’ b 1 2\
€ coso - eo(nza -— -——sin¢ - — sin ¢)
a a a
(142a) Q) =1 + ; 1
€ cos ¢+ eo(nza -b°_2b sind¢ 1 sinztb) 2
a a a

. el2dky cos ¢

The transformed path of integration cg, the path of steepest
descent, the saddle point and the branch points due to k, are the

same as those shown in Fig, 9. The poles are transformed from

(141) as

be2 1 ' ¢
(143a) sin ¢y, = sin(op+ing) = [ ao t g2 /(ez - —a°->
(143Db) -1 (if € = €45) .

Because of the deformation of the path of integration the integral

in (142) becomes

(144) H, = - we;):/Io S" Q) eikor cos(d-0) do
Cs
_ iwegMg }‘ G(¢p) eikor coS(¢p-9) + K
2 >,
P



where ¢>p is given by (143), G(<1>p) is the residue of Q(¢) at ¢p

and K is the branch cut integral, If there is no pole near the

saddle point O the first term in (144) can be evaluated approximately

for far field as

M ikgr -12— - Q™(e) —im%
(145a) H,=- XYoo . -
4w [ 4 m
m=0
mtl
r( 2 )
1+ (-1 ™ m+l
[ ( ) ] Z(k r) >
2
where
m
d Q
Q™(0) = ri:b)
d
¢ 0=0 .
The leading term of (145a) is
o .
- € M 1 01‘ "14
(145b) %Mo Qo) .

zﬁ(korﬁ

The residue of Q(¢) at pole $p is

i2d k_ cos
2¢¢ cos bpe ° p
(146a)  Gl4p) = -
—e? si ‘o .
€ s1n¢p + > (b+ 51n¢p)
4 . i2dkgcosdy ..
(146Db) =( ?1 )tan ¢p (1+i2d kjcos ¢P) e ° P (ife = €) .
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The branch cut integral K is given approximately by

2 1
mEoMo i2
(147)

2
H = — (bkgy + k O)J
Z(branch) > Ez(kz'k;o) y3 2 a Yy

2 2 .
. 'Jkyo"ko (x+d) + 1kon

where kyo is the branch point given in (102b), The leading terms

for Ey and Ey from saddle point method of integration are

ud
ikor —14
M.k, e
(145b)  H, ¥ —=2 T— sin 8 Q(8)
212w (kor)z
ikor—iz‘
L ~Moks e
(145c) E_ X —=2 ——7— cos 6 Q(0)

y 1
2y2m (kor)z

where Q(B) is given by (142a). In terms of cylindrical coordinates

the field components are

(1454d) E_« 0

(145e)  Eq -

- -Tr
—we. M 1kor-1Z
(145b)  H ¥ —2 e Q(8).
2J2m(kyr)?
The Poynting vector is
- a ] = =% A weoMz 2
(145f) S~ <-<ExXxHY*=fFf —272 |qum]".
2 16 wr



Electric Line Source Parallel
to Y-Axis

The electric line source located at x =d, z = 0 and parallel

to y-axis can be represented by

(146) T =§3,6(x-d) 8(z) .

As the current has no variation in y-direction the radiated field

will be independent of y. The method of potentials is used in
constructing the total electromagnetic fields, The fields will be
expressed in terms of the magnetic and electric vector potentials
KT and FT in the upper region and ZB and E‘B in the lower region
having only y-components, The field components in the upper

region are given as

— A\VAVA KT 1 —
(147a) E=ivAp- ———— - = VXFq
iwpee o
— 1 — —_ VA% —I‘:‘T
Ho iwpg€,
or
) -1 PAT
E = -— H - —
X e, 0z X pg 9z
E, =% —= H, = —— —p
EO X p,o X
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where AT = ;r\AT and ?‘T = QFT. A and Fp satisfy respectively

the wave equations

2
(148a) VAT + kg Ap = —pgly 6(x-d) (=)
and
2 2
(148b) VFp + k,Fp =0,

The solutions are

L T ik, z
(149a) AT = —Z—Tr .g‘ gi1(x, kz)e dkz
-0
° i x+ik
_ 1 1EXT1 Z
(149b) Fopo= Py g ga(ky) e z dk,
-C0

2 2
where £% = ko, -k, and g, is the same as that shown in (90). g, and
R have to be determined by the boundary conditions at x = 0 which
will be discussed later on,

In the bottom region we introduce the vector functions

(150a) AB; =YAB; = @« Ag = Apg = yAp
and

—_— A = —_ — A
(150b) Fg,=yFB =a+ Fg=Fp=yFp



ApR; and FRB; have to satisfy the equation (43) which in this problem
is

82 2 2 2 ‘ABl
(151) — + 9 2 &2 + kza =0.
FB)

The solutions are

® ik_x +ik,z
(152a) Ap; = 1 g‘ f1(k,) e x* 2% 4k,
27 .
-0
and
o«
1 ik x +ik, 2z
(152b) Fg; = > g‘fz(kz)e ® z dk,
...w
2 2 mzﬂz 2 .
where k, = ka - z -k,. f; and f; are determined by the

boundary conditions at x = 0. The roots of £ and ky will be chosen
in the same way as shown in (96). Using Egs. (45) and (46) we

get the field components in the bottom region

—_ —_ l—)l° K]3 1 =_1 —
(153a) E =iwAg-D, 7, -7 @ « (D X Fg)
iwpea €
— — [(V+iw0) - A =_
= iwApy (VoD = ) AR 1=
€

. 2
jwpe a

° [(V +iw§_2) X fBl]
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—_ 1 =._ — — —
(153b)  H= - @ ' (7+ien) XAg,] + ie FB,

[(V+iwQ) * FB, ]

- {V tiwsd

iw e al

or

1 9AB;  9FB;

-@  O9AB, 1 9B

E, = oo ox T a0z x = Ha 0z  peaz OX
2 2
. §2 _ Q
Ey=1¢°AB1( _peaz) Hy = iw FB, <1 -mz)
0 dAB, 1 9F B, . _L 0AB; _ 2 0FB
E, = ;Le a2 0z Tea  0x Z " pa 0x  pea? 0z o

The tangential components of electric and magnetic field components

at the boundary x = 0 are required to be continuous, As a conse-

quence we find

- ifd 2
(154a) Holo (1 +R)e1 = (1 Y £,
214 p.ea?‘
Qk k
VA X
(154b) Logy= o ht— L
€4 HEa €a
2
Q
(154c) gz = (1 - pea2> fa
I, igd _ iky ik,
0 (1- = — f; - i, .
(154d) - (1-R) e = a2

4



Solving these simultaneous equations the results are

2
(155) R =l €a(l-a) f-e k] [pa(l-a)l+poky] ~apoes Ky
[e a(l-a)l-eokx] [;-La(l—af)l-pokx] +a p.oeok;

ifd
ipgesl,(1-a) 2k, e
(156) g2= 3
[ea(l-a) L-¢ k] [pa(l-a)t-poky] +apye ky
where
2
Q
T near .

Hence, the final expressions for the field components in the region
x >d are given in the following integral form.

o .2 il(x+d)+ik,z

Holg(l-a) 2 g‘ k, e
157 E, == - " dk
( ») * 2 . Rg 2
-
@ i20d if (x-d) +ik, .z
(157b) E, = _ @otolo g' 1 [1+ Rn 124 }e (=< “ diy,
Yy 4 J £ Ry
i (x+d) +ikyz
pol (1-2)2 ® fk,e z
(157¢) E, = —2>—— g‘ dk,
2m Ry

-0

Io ® k, Rn iz2ed| if(x-d) +ik, z
(157d) Hy =7~ g‘ 7 1+ == e e z” dk,
m

© if (x+d) +ikyz

I (1-a)2 e
(157e) H, = - Stotoolind f : dk,
R
d

-0



dk,

(157f) H, = -
Rg

I, (7 Ry i20d] if(x=d)+ik,z
1+ e e

where
2
R, = [ea(l-a)2 -eokx] [}.La(l—a)l+p.okx] -apoeokz
2
Ry = [ea(l-a)? -eokx][ Ha(leo) £ - poky ]+ @poeo Ky o

Two of the branch points are given in (102a) while the other two

are

(102¢) Kpp = =

One of these two branch points is on the right side of ky and the
other one on the left side of «k, in the k,-plane, This is shown

in Fig. 12, The location of the poles are found by solving

2

(158a) [ea(l-a) £-eok, ] [pa(l-a) £ ~pgky] +opgeok, =0
i, e.,
2. 2 2 b2
2
(158Db) [ aMgéo=Hoto=Rea (1-a) ]kz + Botoko (nza -a—)

2
+ nea®(l-a) %k ,

= a(l-o) (pegy + poe ) £ ky
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Fig, 12--Relative positions of branch points, branch cuts
and the path of integration in k,-plane and ¢-plane

1



8

Squaring both sides of (158b) we get the solutions

(][

(1592) Kk, =t o[ (a & [B)/C]
where
A =-[2@ 1) B+ (np +ep) 2(14n2- 289)]
B = (ute,) 2{(n1) 2[ (ptey) 2+ 4(n2-2p%)] +16(n%-p%)2 )
C =2(1-p%) [(1+n%) % - (p o+ ) 7]
b= by e =/
or
(155b) k, = 1 kg (D/E)% (if b = pg oF € = €g)
where

D = (n®+1)? [(n?+ 1) F-n°] - 4np*

E = (1- B9 (n%+1) (n?+1-2B) (n®+ 1+ 2B) .
The location of these poles must be examined to see which Riemann
sheet they are on,
Whenv =0 Q as well as o and g, equal zero and the R shown
in (155) reduces to that given in (99a) which eventually becomes the
reflection coefficient from a semi-infinite stationary rnedium.[ 27]

When = py and € = ¢; both R and g, reduce to zero we have the



same conclusion as the one given in Section IV-1 that the motion
of the bottom region have no effect upon the whole radiation field,
The motion of the bottom region creates those field components
derived from the potential functions ET and EB which do not
exist when the bottom region is stationary or moving in the
direction perpendicular to the line source,

Applying the transformation given in (110) with ky re-

placed by k,, Eq. (157b) becomes

w Mg I, ikgr cos($-0)
(160) Ey=- P(d) e do
CO
where
(160a)
b : b 2 ]
[era(l-o) cos ¢ + (nza bl sinsz)“] [pra(l—o) cos ¢ —(nza -;- sin ¢)¢]-a sinZ
P@) = 1 + — e e .
[era(l—o) cos b+ (na - l_)— -sinzdﬁ)‘,] [pra(l-o) cos ¢+ (na _b_ sinzd)é] +o sin%%
a a
i2d kocos¢

e

The transformed path of integration C_,, the path of the steepest
descent Cg which is determined by cos(c-8) coshn = 1, the saddle
point & and the branch cuts in the ¢-plane are shown in Fig. 12,
The hatched region corresponding to the proper branch for £,
The branch points due to ky in the ¢-plane are transformed from

(102c) as the solution of
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-ﬁ

161
( a) sin ¢ = T

and the pole from (159) as

1
(161b) sin ¢ =& [(a +/B)/C)

(161c) f\/D/E (if 1= pg or € = €5),

Deforming the path of integration from C_ to Cg the integral given in

(160) changes to

(162) Ey: _u)[.l.o_'[o g' P(¢)eikor COS(CP—G)

4
™ c.

-lobolo NRLE
P P
P

ikyr cos(¢p—9) LK

where ¢p is given by (161b,c), F(d)p) is the residue of P($) at ¢p and
K is the branch cut integral, If there are no poles of the integrand

near the saddle point the first term in (162) can be evaluated asymp-

totically as

ik I o ., T
1 I‘—14_ -1m
(163a) ny_“Lolo Z e *
41
m=0
r(m+1)
m
« [14¢(-1
[1+(-0™] o




m

d P
where Pm(e) = —% and I is gamma function, The leading
dCl) q):e
term is
L

w ko Lo ikgr -1
(163b) E,R"——=— 1 ° % Po) .

2mw(kgr)?

Since these poles are simple ones the residue of P(¢) at ¢P is

(164) F(¢p) = Fn/Fy

2 1
F, = 2p.a(l-a) cos q:p [era(l—a/) cos ¢p_-l:(nza 'P;‘Sin%bp )2}

izdk y
. el c)cos<3f~p

b
o
|

= 2asingpcos q)p - sinq;p [era(l—a) cos ¢P

2 1 cos ¢
+ (nza _b -sinz¢P)2:l [p.ra(l—af) + P 1]
a (

b2,
n%a - = -sin%
a

cos<j>p
+|epa(l-a) + 1
i B 2y —b—z—s' Zda 2
n a in P
2 z
2. b .2
kra(l-a) cos ¢y + (n a-——-sin ¢p) .
If the pole happens to be in the near vicinity of the saddlepoint the first

term in (162) can be evaluated asymptotically in the same manner

as the one shown in Section IV-1,
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The radiation patterns are symmetric with respect to x-axis.
A branch cut intégral must be included if the path C is intercepted
by the branch cut when the angle of observation 0 extends over the

limit given by

2
(165) 9=sin—l[/%} .

The complete contour is constructed in the same way as that shown
in Fig. 1la, The branch cut integral can be performed approxi-
mately as follows,

Making the transform of variable such that

(166) k, =k, +it/z

where k,, is one of the branch points shown in (102c). In terms of
the new variable t, the following approximations are permissible

for large values of z,

e
~N
i
taa
[
$
P
n
x
o)
1
o
N
o]
+
li—l
by
4
P
o)
!
P
N
o]

2 2 .. \2
2 2( 2 b 2 2 (2 b it
kx ko<n a - —a—> -k, = ko (n a - ———a )"(kzo + _z

2
2( 2 b 2 ; 2, 2
ko(n a - )— k.o -21kzot/z +t/z

N -2ikyot/z .

Equation (157b) reduces to



(+0)
167) E. = -9kolo S‘ 1
(167) ¥ . 1

[o0]

2201 2,2 2 2 .
€rbpd (1-a) ~(Hp=€p) a(l-a)f ky=k, - akyo e121d
z

exiraZ(l-a) 22 (prte,) a(l=a) £ ky~k.ta kg

" _ .
] el zoZ-t (_1_) dt
z

. . 3/2 2 2 2
o @ olpa(l-a)y 2kzo (1_) Erpraz(l—af) z(ko_kzo)-akzo
4w “

- |1+

2 2 2
€ phtpa’(1-2) (k. ) +ak,

Br + € By = €r
2

2 2,,2 ,2 2 2 2,,2 .2
erpra’(l-) “(ko-k, ) +akzo € b 2a’(l-a) (ko-kzo) -ak

2 2
ik, oz - ’kzo -k, (x+d)
e

It is clear that both the branch cut integral shown in (167) and the

zZzOo

residue wave term shown in (162) are negligible as compared with
the space wave term given in (163) when only the far field is con-
cerned, The same procedures shown above can be used in evaluating
other field components given in (157), The leading terms from the

saddle point method of integration are,

. T

I(l-a)02k ik r -i

o{l-2) 2 e ° % sine P,(0)
€od2m(kyr)2

(163c) Ey = -
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Io(l-a)Q ke  iKor-i=—

(1634d) E, = T e 4 cos 6 Py(1)
eovN2m(ker)?
e T
Ioko 1 Or-i4
(163e) Hy = ————7 e sin 6 P(9)
Z\I 2mw(k,r)?
e L
~wl (1-a)2  iker-ij
(1631) Hy = of l) e P, (0)
J27 (kor)°
Ioko ikor-iy
(163g) H e cos 8 P(8)

ST T
“ 2 [Zm(k,r)?
where P($) is given in (160a) and

(168) Pi¢) =

i2d k
sin ¢ cos ¢ e12 o cos ¢
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2 1 1 .
[era(l-a/) cos ¢+(n2a- b: - sinz¢)2] [ Mra(l-a) cos ¢+(nza-—i —sin2¢)2] +o sinz¢
a

In cylindrical coordinates the field components and Poynting vector

due to potential Ax are

~

(163h) H_ ~0
LS
k ikor -1 g
Isko 4 P(6
(1634) HoX- — 1 °© )
2y2m(kyr)?
» - ‘"
N 0o Io ikgr-i y
(163b) Ey ~ P(6)

- ———T e
2 J2m(k rf



2
ExB* = § “Polo [p)|?

—_ 1
(163] S= =
J) 2 16wr

and those due to potential Fp are

(163k) E. X0
ik . T
~ Io(l—a)Qko 1 01'-14
(1631) Eg ~ T— ¢ - P1(6)
— 2
eo\IZ'rr(kor)
: s
~ wIO(l-oz)Q 1k01‘-14
(163f) Honv-——————x— e P, (0)
J2m(kgr)
—_— ]l = % 1-a) 21202
(163m) sz EXH:{-\w(—a)_O__ |p1(e)‘z.
4meyr
Magnetic Line Source Parallel
to Y-Axis
For a magnetic line source located at x =d, z = 0 and parallel

to y-axis we write it as

(169) M= § M, 6(x-d) 8(z) .

The radiated field has no variation with respect to y. The formu-
lation of the problem in this section is similar to the one in the
previous section with minor differences, The field components in
the upper region are given by (147)but AT and Fp satisfy respec-

tively the following wave equations,
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2 2
(170a) VAq +k AL =0
and
2
(170Db) VP + ko Fp = - € Mg 8(x-d) 8(z) .

The solutions are

[=]

1 ix+ikyz
(171a) Ar= 37 ) milkg) e dk,,
-
T ik, z
= z
(171b) Fq = o g‘ ga(x,k,) e dk,
-

where £%= kz -k; and g, is the same as that shown in (132). g;
and R are determined later on by the boundary conditions at x = 0,
In the bottom region we use the same formulation from (150)
through (153). Matching the tangential electric and magnetic field
components of both sides at the boundary x = 0 gives the following

simultaneous equations,

Q
(172a) g, = (1 - 2) f,

M i1d iRk ik
(172b) 29 (1-R)e 7 = Z g+ X g

2 Y3 a? €a

.M 14 Q°

“*o*"o 1

“fo¥o_ -(1- f
(172¢) o (14R) e (1 Heaz) 2



k
(172d) A og = kg T2
Fo pa pea

From (172) we have

2
(173) = [ka(1l-a) 2 -P'ka] [ea(1l~a)4 +€ka] ~opg€ ok,

2
[pa(l-a)f =poky] [ea(l-a)f-e Kk, ]+ o€k,

itd
mipgeo(l-a) @Moky e’

(174) g1 7= 2
[pa(l=a)f-poky] [a(l-a)f-e ky] +apgeck,

The expressions in integral form for the field components in the

region x 2 d are

-M K Rn i if (x=d) +ik
(175a) E, = —-0 Y z {1+ n 12£d} i£(x-d) Hk,z

(175Db) E. = wHoeo(l-a)2 Mg ® kg eif(x+d)+ikzz
y 27 Rd A
-
=8
M Rp i28d | if(x-d) +ik
(175c¢) E, =__°§ [1 —n 1 }el (x-d) +ik, = dk,
41 . d
=00
2 1 (x+d) +ikyz
—eo(l-a)2 Mg e N
175d =
( ) H, — g‘ ¥ ]

-0
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~we M, °° i2fd| if(x=d) +ik_z
(175e) HY=——°—°\, Ly Bt e( ) ¥k dk
. 411' ' ‘e Rd z
-0
€o(l-a) @M, (% kgd  if(xtd)+ik,z
(1751) Hy = ———— g‘ Ry © dk,
-0
where
2
Ry = [pa(l-a)f -poky] [ea(l-a)f +eoky] = apgeok,

2
Rgq = [pa(l-a)f -pok, ] [ ea(l-a)l-egky] + apge k, .

Branch points are given in (102a, c) and shown in Fig, 12. Poles
can be found from (159). Using the transformation (110) where ky

is replaced by k, (175e) becomes

(176) Hy L _ WE M, g.w Q(¢)eik°r cos($-6) dé
47 .

where

(176a) Q) =1+

1

i L
[ ppa(l-a)cos ¢+(nza-—b:— -sinzq))a] [era(l—a) cos ¢-(na- E—z—sin2¢)2]—asinz¢

2 1 1
[ p.a(l-a)cos d+(na- 5— -sinzq>)z] [ era(l-a)cos é+(n’a- _12_2 —sinz¢)2]+ a sin%
a

eiZd k,cos ¢




The transformed path of integration C, and the steepest descent
path C4 are also shown in Fig, 12, The branch points and poles in
¢-plane are given by (161)., Shifting the path of integration from

Co, to Cg the integral in (176e) can be written as

wegM

177 H = -
a7 Y = Y Q) e

Cs

ikgr cos(¢-0) dé

4 M ik r cos -0
_leO (o] ZG(¢)6 o] (¢p )+K
2 P
p
where G(¢p) is the residue of Q(¢) at the pole d)p which is given in
(161b, c), If there are no poles located near the saddle point the

first term in (177) can be evaluated approximately for the far field

as
-k 01 m m . 1
oT~lg4 Q (9) ~img4
(178a) o= ®%Mo | z m(' e [1+(-1)™]
Yy 4 !
m=0
m+]
r (37
m+tl
Z(kor 2
2
where the leading term is
K s
. cwe. M ikgr-iy
(178b) Hy % S e Q(e) .
2
2\2m (kor)
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The residue of Q(¢) at pole d’p is

(179) G(¢y) =Gp/Gg

2 1
G, = Zera(l-a) cos q)p [p.ra(l-a) cos cbp +(nza, -:— —Sinz¢p)2]

eiZd k ,cos ¢p

2 1
Gq = 2asin4>p cos ¢p—sin ¢P{[era(1—a/) cos ¢p+(nza.- b—-sinzd)p)z]

a
0s ¢
. [p.ra(l-a) + < Sz P g

(n%a - % -sinq)p)

+ [era(l—a) + co8 ¢p }

2
(nza - b: - sinzd)p)

=

2
2. b :
+ [pra(l-a)cos dpt (n"a - —s1n¢p)

[SE

] .

A branch cut integral has to be included if the angle of observation ©

is beyond the limit given in (165), Its approximate value is

(180) H

iwega M, (1-a) [2k,q (i )3/2
z
4[w

2 2.2 2 ;
erppa (1-a) (ky-k, ) ~ak
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2
p4e]

2 2,2 2 2
€pppa (1-a) (ko-kzo)+akzo 4



(180)
(cont)

By + €. €r - Py ]

Vz 2.2 2 2 2 2
[Erp.ra (1-a) (ko-kzo)+ak;0 e pra?(l-a) ¥k, -k, ) ~ak

. 2 2
iky oz - }kzo-ko (x+d)

- €

where kz, is given in (102c), The leading term from the saddle

point method of integration for the other field components in (175)

are
. .
~ _MO k0 1k01‘—1 . 0 Q 0
(178c¢) Ex-\. ——_L e sin (6)
2 12w (]:(Or)2
now(l-a) @My iker-iy
(1784) E, ~ - e P,(0)
2
JZ-rr (ko)
» . Tr
Mk ikor-ig
(178e) E, * —2%° . % cos 6 Q(9)
2 |21T(1<0r)E
™
~(1-0)2 Mgk ikor-ig
~ o™o
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Ho fzn(kor)z
L
(l-e) Mk ikyr-iy
(178g) H, % °e° . cos 6 P,(0)

1
IJ-O.‘ZTr(kOr)?‘
where Q(¢) is given in (176a) and P,(4) in (168), In cylindrical
coordinates the field components and Poynting vector due to

potential Fq are
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CHAPTER V
CONCLUSIONS

The definite form of Maxwell's equations for a moving
isotropic and lossless medium has been derived by making use
of the constitutive relations as found in Minkowski's theory,
The wave equations satisfied by the field vectors were given.
The integration of these equations is performed by the intro-
duction of the vector and scalar potential functions following a
method similar to that used for the stationary medium, The
results are then applied to treat two problems, The first is the
problem of rectangular and cylindrical waveguides which are
filled with isotropic and lossless media moving uniformly in the
direction parallel to the axis of the guide. The second problem
deals with the effect of uniform motion of a dielectric half-space
on the radiation from a line source located above and parallel to
the half-space, The sources considered are electric and magnetic
line sources, perpendicular or parallel to the direction of motion,

The results thus obtained reduce, as expected, to the known
solutions for a medium at rest when the medium becomes stationary
or when the constitutive parameters of the medium are set equal

to those of free space,
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In the waveguide problem it is found that when the velocity
of the medium is small such that nf < 1 there is another fre-
quency limit denoted by f, which is larger than the cut off fre-
quency f.. Two waves with different phase velocity can propagate
freely and the faster one travels in the direction opposite to that
of the moving medium while the other one travels in this or the
reversed direction depending on whether the frequency is below
or above f+. f4 reduces to f. when P approaches zero or n
approaches cne. As the velocity of the medium becomes higher
and np > 1, the cut off phenomenon disappears but there is still
another frequency limit denoted by f_ given by the same formula
as that for £, It is also possible to have two waves of unequal
phase velocity propagating without attenuation, Both will travel
in the same direction as that of the medium unless the frequency
is lower than f_in which case the slower one travels in the opposite
direction,

In the case of a moving half-space when the line source is
oriented perpendicular to the moving direction, the field expressions
are similar to those in the stationary case and the far field is linearly
polarized, When the line source is oriented parallel to the moving

direction another wave component arises and its magnitude varies



mainly with the velocity, Then the radiated field is in general
elliptically polarized, However, the direction of power flow for
each individual wave component is found to be radial,

The proper location of the branch cuts depends upon the
magnitude of the index of refraction and the velocity of the moving
medium, Stronger variations are observed when the line source

is oriented perpendicular to the moving direction,
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